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Creeping flow in two-dimensional networks 

By .I. KOPLIK 

Journal of Fluid Mechanics, vol. 119 (1982), pp. 219-247 

Two extensions have come to light since the appearance of this paper, on fluid flow 
in two-dimensional random networks of the ' ball-and-stick ' variety. 

First, we pointed out in the paper that most results could be taken over directly 
in the 3-dimensional case, the only missing ingredient being an expression for the 
pressure drop across a spherical pore. In the 2-dimensional case, our earlier result (24c) 
for circular pores may be shown to be equivalent to the pressure drop for a straight 
channel emptying into a half-plane. For 3 dimensions i t  then suffices to know the 
pressure drop for a cylindrical channel emptying into a half-space. This latter problem 
has been thoroughly investigated by Z. Dagan, S. Weinbaum & R. Pfeffer (J. Fluid 
Mech. 115 (1982), 505) who in effect find, as a 3-dimensional replacement for (24c), 

The networks discussed in the paper were not fully random, in that the pore centres 
were constrained to lie on the nodes of a regular lattice, but we may generalize our 
results as follows. In place of the case-by-case calculations of $ 5  for various specific 
lattices, consider, as in figure 1, an arbitrary lattice in which the nodes are randomly 
distributed in space and connected together in a random fashion. We require the 
permeability of this lattice, under the assumption that the flux in bond b is related 
to the pressure drop Apb across its ends by Qb = gmApb. We suppose the two ends 
of the network are held at fixed predsures, and define an average pressure gradient 
( V p )  as the difference in end pressures divided by sample length. Choose a plane P 
perpendicular to ( V p ) ,  and compute the total fluid flux QT passing through the plane. 
The latter is just the sum of the individual bond fluxes Qb for bonds b crossing P .  
The obvious first approximation, suggested to the author by B. I. Halperin, is 
obtained by assuming that the local pressure field is the same as the average pressure 
field, in which case Apb is just the projection of the bond length in the direction 
of ( V p ) .  Thus 

Q ~ ( p ) = g m  x lb' (vP>.  
b n P  

The average fluid velocity is computed by dividing QT(P)  by the area A ( P )  of the 
sample plane, and averaging over different planes P. The permeability is the 
proportionality constant relating ( V p )  to the average velocity and so 

where ii is a unit vector orthogonal to P.  If the network is statistically homogeneous 
and isotropic, k will be independent of the choice of ii. For a 2-dimensional network, 
t is given by the same construction with A replaced by the sample width. Note that 
k always has the dimensions of area. The approximation of equating local and average 
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pressure fields (which we have also used to obtain gm) should be correct to first order 
in the pressure fluctuations. When these fluctuations are absent, as in a regular lattice, 
this replacement should be exact, and one may check that (4) agrees with the results 
for t stated in the paper (see tables 4 and 5 )  for various 2- and 3-dimensional lattices. 


